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Let us consider a volume k’ filled with incompressible fluid. The volume can be either 
bounded or unbounded. Specifically, the fluid can fill the entire space. The boundaries 

can vary with time, but this variation must not depend on the motion of the fluid itself. 
This excludes the stream with a free surface and also the case of a vessel with elastic 

walls. 
The position at the instant t of a fluid particle which initially occupied the position 

a will be denoted by g (t, a). The condition of incompressibility is 

uj__ 
Ua -I (1) 

Theleft side of this equation is a transformation Jacobian. The state of the fluid is 
characterized by the quantitfes ufk) (t, a), (X- = 1,2,. . . 1, each of which can denote a set 
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of fields (e. & the velocity,vortex, pressure and impurity concentration fields, etc. ). In 
Eulerian coordinates a(‘) = aa@) (t, x). 

Let us isolate n fluid particles which occupied the positions a(*),. . . , a(“) at the lnitiai 

instant. The expression p,, (1, x(r), s(r), . . . , .p, p) 1 a(l), . . . , ,oo) = 

=<fi 6(%(t, a(k))-x(k))S(o(h’)(t, afkI)- ,(‘I)> (2) 
h-=1 

(6 (x) is a delta function) 

defines the combined probability density of the values of a and of*) at the instant t ; 
the angle brackets denote averaging over the ensemble of sweam realizations (for a fixed 

law of boundary motion). In the Eulerian context 
n 

F, (t, xflf, s(1), . * * , x@), P)) = <lJ 6 (a’o (& xw)- &k)) 
E > 

‘k=l 

Bere F, is the probability density of the values of otk) at fixed points in space. For 
an incompressible fluid we have the basic formula 

c s 
* . . P, dW . . . &‘a(“)= F, (4) 

3 v 
To prove this we substitute(‘l) the left side of (4) and change the order of inte- 

gration and averaging (this is possible in the case of a fixed law of boundary motion). 
We have 

s s 
. . . Pn d%(’ ) (5) 

v v 
. . . flu@)=<fi \&i($(t, a)-x(‘)) 6(&k]@, a) - Jk))haa) 

k=,* 
Let us convert from integration over-a to integration over & By virtue of incompres- 

sibility condition (l), the transformation Jacobian is equal to unity. Since 

btk)(tt a)= aLk)(t, x) for g(t, 8)=x (6) 

it follows that the right sides of (5) and (3) coincide. Relation (4) has therefore been 

proved. 
In [1] we used (without proof) the special case of formula (4) where the role of (I is 

played by the vortex field. Taking the velocity field as our (J , we find that for n=i 

formula (4) yields c PI (t, x, v [ a) CPU = FI (4 x, v) (7) 
d 

Specifically, for a homogeneous stream 

S(& x, vl a)= Pi{& x-a,vlO) (8) 

and F1 does not depend on x. The density of the velocity distribution for a single fluid 
particle is 

IVi(t. v)=SPl(t, x, vla)dsx (9) 

From (7)-(g) we obtain 
IV1 (t, v) = FI (t, v) (16) 

Thus, in the case of a homogeneous stream of incompressible fluid the density of the 

velocity distribution of a specified fluid particle coincides with the density of the velo- 
city distribution at a particular point. The same result was obtained in a different way 
in p]. The above proof shows that (10) remains valid for any hydrodynamic fleld.Spe- 
cifically. in estimating the parameters of the asymptotic form of the energy spectrum 
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of a turbulent stream for large wave numbers in [3], we assumed, in fact, that the disper- 
sions of the straining rate tensor in the I~agrangian and Eulerian descriptions were the 
same. We have now proved this fact. 

A simple transformation of (4) yields the following expression for the relative motion 
of fluid particles in a homogeneous stream : 

I 
’ W, (t, r, u j rO) d3ro= IIg (t, r, u) (11) 

Here II’, is the combined density of the distributions of the velocity difference and 

of the distance between fluid particles initially separated by the distance rO; Ilk is the 

density of the velocity difference distribution at two fixed points the distance r apart. 
Formula (4) can also be used to obtain several other new relations. 
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In oontrast to three-dimensional motions, two-dimensional motions have not only the 
usual energy integral, but also an integral of motion which is quadratic in the velocity, 

namely the square of the curl of the velocity field. As is shown in [l, 21, this fact ensures 
the existence of a solution of the hydrodynamics equations with a normal (Gaussian) dis- 
tribution of the velocity field probabilities with a spectrum different from white noise. 

Our purpose in the present paper is to determine the characteristic of such a distribu- 

tion, i.e. the correlation (structural) function of the fields under investigation, directly 
from the hydrodynamics equations. 

Let us consider the two-dimensional motion of an incompressible inviscid turbulent 
fluid in the xy-plane. We assume that the turbulence is stationary in time and homo- 
geneous and isotropic in space. The motion of the fluid is described by the stream func- 
tion $ (r, t) which satisfies the equation 

Here (q, $) are the Poisson brackets and A is the two-dimensional Laplacian. The 
velocity field is defined by the vector (.-- w / a~, ag / 8~). 


